PICTOR: An Open Source Low Cost Radio Telescope based on RTL-SDR

pictor radio telescope

PICTOR is an open source and open hardware radio telescope that aims to promote radio astronomy on a budget. It consists of a 1.5 meter parabolic dish antenna, 1420 MHz feedhorn, a two stage low noise amplifier (LNA), high pass filter, and from what we gather, an RTL-SDR. Future designs may also use higher bandwidth SDRs. Currently there doesn’t seem to be much information about the build and exact components used in their design, but we’re hoping that those details will come in time.

The radio telescope allows a user to measure hydrogen line emissions from our galaxy. Hydrogen atoms randomly emit photons at a wavelength of 21cm (1420.4058 MHz). The emissions themselves are very rare, but since our galaxy is full of hydrogen atoms the aggregate effect is that a radio telescope can detect a power spike at 21cm. If the telescope points to within the plane of our galaxy (the milky way), the spike becomes significantly more powerful since our galaxy contains more hydrogen than the space between galaxies. Radio astronomers are able to use this information to determine the shape and rotational speed of our own galaxy.

PICTOR also has a very interesting web based interface which can be used to let users from anywhere in the world access the telescope and log an observation. The first PICTOR telescope is currently online and observations can be created simply by going to their website, and clicking on the “Observe” link. Users can then enter the frequency and other parameters for their observation, and the resulting graph will be emailed to you after the observation. The software source is available on their GitHub page, and is based on a GNU Radio flowgraph and Python plot script.

For more information about PICTOR, logging an observation, and radio astronomy in general, we recommend checking out their PDF guide. We test ran a short observation at the hydrogen line frequency, and we received a graph with the hydrogen line peak clearly visible (spliced in to the photo below). We note that the wavy shape is due the to shape of the filters they used.

PICTOR Radio Telescope